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Vanishing Spontaneous Magnetization for Quantum 
Mechanical Models of a Spin Glass 
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We prove that the spontaneous magnetization vanishes identically (indepen- 
dently of boundary conditions) for certain quantum mechanical models of a 
spin glass. 
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Elitzur's theorem, (l) originally proved in the framework of lattice gauge 
theories, provides one of the most general results for spin glasses, namely, 
that the spontaneous magnetization vanishes identically, independently of 
boundary conditions. Stated thus, the theorem was proved for a large class 
of classical (i.e., Ising-like) models in Ref. 3 (see also Ref. 2). In this note 
we generalize the theorem to a class of quantum mechanical models of a 
spin glass. In addition to possible structural clarification, the subject may 
not be entirely academic because the quantum mechanical nature is essen- 
tial for the Kondo effect (see, e.g., Ref. 4, Chap. 6.8) and it might also be of 
relevance in the spin glass regime (see also the discussion in Ref. 4, Chap. 
6.9). A theory of classical spin glasses has been developed recently, (5) and 
order parameters have been analyzed in Ref. 6. 

We consider for simplicity models described by the Hamiltonians 

H A ( ( J } ) = - � 8 9  ~, J ( i , j ) e ~ ( i - j ) g ( { S ~ } , { S j } )  (1) 
i , j ~ A  

where A is some finite region in 77" (v being the spatial dimension). Above, 
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d/, is a (possibly long-range) potential and J(i, j) = J(j ,  i), J(i, i) = 0 are real 
random variables in some probability space, denoted collectively by {J}. 
In addition, Si ("), a = 1,2,3, are spin operators corresponding to a fixed 
value S of the total spin at each site, satisfying 

[ Si (~), Sj (/~)] = i ~~ i, j ~ 7/~ 

and {S,.} denotes the set {Si (~), a = 1,2,3). We require that ~, {J} and the 
function of two variables g in (1) satisfy conditions sufficient for the 
existence of the thermodynamic limitff -9) Generalization to many-body 
interactions is straightforward. 

In addition to the conditions stated in Ref. 7 or 9 we shall assume that 
the probability measure/z describing the distribution of the {J } satisfies 

( f ( { J  })}~ = ( f ({  - J  })}, (2) 

where { -  J} denotes a configuration obtained from (J  } by reversing the 
sign of an (arbitrary) number of coupling constants, and f is any /,- 
measurable function whose expectation (f~} with respect to/~ exists. We fix 
% ~ [1,3] and define the magnetization in the s 0 direction (a random 
variable) by 

'{ } M a ( { J } , h ) = - ~  2 Si (~~ 
i@A h,{J} 

where IAI is the number of points in A and ( -  }h,{J} the Gibbs expectation 
value 

-- 1 t r { A e x p - f l H A ( { J } , h ) }  (3a) (a>h'(J} -- Za 

Z a = tr exp[ - f lna(  { J }, h) ] (3b) 

HA((J },h) -- "A( ( Ja ) )  - h E si (3c) 
i ~ A  

the traces being taken over ~A----- QieaC~ s+l and h > 0. 

Proposition. Suppose that there exists for each site i 0 ~ 2~" a unitary 
c 2 S +  1 operator U. (~~ on such that t o i0 

Ui(oe~~176176 ('~~ -1  = - Si(o c~~ (4) 

and 

Ui(oa~ })Ui(o a ~  = H A (  ( - J i o } )  Vi o ~ A (5a) 

where ( -  Jio} is the configuration defined by 

_ J~o( i' J) _=_ [ J(i,  j)  if i 4: i o and j 4: i o (5b) 
[ - J ( i , j )  if i = i  o or j = i  0 
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Then 

0 < ( M A ( { J } , h ) )  < t~he2hSs(s+ 1) (6) 

Remark. The main idea of the following simple argument is the 
following: Local gauge transformations ( J  } ~ ( - Ji0}, Sio ~~ - Si(0 ~~ can- 
not be spontaneously broken because the states in the ergodic decomposi- 
tion (lo) would differ only locally and hence correspond to unitarily equiva- 
lent representations of the spin algebra. See also Ref. 11. 

Proof. By (2), (4), and (5) (tr[ U.(a~176176176176 
I i s . < . o )  ~ \ = ,o ,o ,o ,o ,o 
\ \  'o /h,{J}/i t Za 

tt 
= - I I s ~ oo~,~ \ 

\ \  ~o Ih,{J)li~ 

-- ( tr{Si:a~176 --e-flHA({J)'h)]}) ( 7 )  

# 
We use now the Duhamel formula (see, e.g., Ref. 12 and references given 
there) 

d tr[ e-n(H+xB)A ] Zx 
d---~ Z = - / 3 (B ,  A)x ~ -  (8) 

where Z x --= tre -B("+xS), Z = Z~,= o and 

(B'A)x=-- f~dx tr[ e -~r A ] 
Zx 

is the Duhamel two-point function. Inserting (8) into (7) with H = H A ( ( J  }, 
h), B = 2hS(~~ and A = S. (~o),o , ( A , B ) =  (A,B)x,(j1 , we obtain 

((S.(ao)\ \ -=~h( (ldx{S.(ao) S.(~o)~ Zx ) 
,o Ih , (s ) l .  JO t ,o ' ,o ]x,{J} Z (9) 

where ( . )x , ( J )  is the expectation value in the Gibbs state defined by the 
Hamiltonian HA({J},h ) + 2XhS (~0) Note that (9) shows in particular that ,o 
the left-hand side is nonnegative. By Bogoliubov's inequality (see, e.g., 
Ref. 12) 

0 < [S ('o) S.(~o)] < [S(~~ <~ S(S + 1) (10) i~ ' to ]X,(J} \ io /X,(J} 
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By the Golden-Thompson inequality (see, e.g., Ref. 13, Theorem 4) 

Z~ / e 2hhS/o~~ 2hS(~~ ' e 2hS ( 11 ) < \ /h,{s} < e ,0 = 

The above estimates being independent of i 0 E A, (9), (10), and (11) yield 
the final assertion. �9 

In the above proof we had to average the various quantities over the 
probability distribution. The reproducibility of the outcomes of most experi- 
ments on random systems requires that statements be true "irrespective of 
the sample," i.e., with probability one (see Ref. 14 for a careful discussion): 

Theorem. 

lim lim Ma({J},h)=--O 
h - ~ 0 +  IAI + oo 

with probability one, under the assumption of the proposition. 

Remark. We assume for simplicity the IAI are a sequence of cubes of 
side L; IAI ~ ~ means L--> m. 

Proof. By Refs. 7 and 9, the sequence of free energies 

fx({J },h) +/3 - 1  l~ tre-/~lL'({J}'h) (12) 
I11 

(equal to minus the usual free energies, for convenience) converges as 
IAI ~ ~ with probability one. The limiting free energy f ( { J ) ,  h) is almost 
everywhere equal to ( f (J ) ,  h ) > / , .  (7'9) 

Hence 

fA({J },h)--------+(f({J } ,h) ) ,  with probability one (13) 
IAI~  

and 

( fA({J }, h ) > u l a ~  ( f ( { J ) ,  h))~ (14) 

By the proposition, if E > O, 

0 ~ < ( A ( { J } , h + e ) )  - ( fA({J} ,h ) )  < ce(h+c)exp[ZS(h+c)] (15) 

for some constant c independent of hA. Taking the limit IAI ~ or in (15) 
and using (14), we obtain 

d + ( f ( ( J  },h)> 
0 < dh < chexp(2Sh) (16) 

where d+g(x)/dx denotes the right derivative of the function g at the 
point x: note that ( f ({J  }, h)> has everywhere a right derivative because it 
is a convex function of h. Also fa({J},h)  are a sequence of convex 
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functions of h and by (13), positivity of MA({J },h) and Griffith's Lemma 
[151: 

0 < l iminfMA({J },h) < lira supMA((J  },h) 

d + <f ({e  ), h) ) ,  
< dh (17) 

for any h > 0, with probability one. The final assertion follows from (16) 
and (17) upon taking the limit h-~0+ �9 

The conditions of the proposition are met by the generalized xy spin 
glass 

1 Si( I)Sj(1) Si(2)Sj(2)] HA({J }) = ~ ~ J ( i , j )~ ( i - j ) [  + 
i , j~A 

with a 0 = 1 or 2, choosing U{~~ = exp(+ i~rSi(o3)). They do not apply to the 
full Heisenberg spin glass, for the obvious reason that there exists no 
unitary which implements S{~)+ - S  {~) for all a = 1, 2, 3. This is the same l0 l0 
reason why the Mattis-xy, but not the Mattis Heisenberg model, is reduc- 
ible to an ordered model by a local guage transformation (Ref. 4, 'Chap. 
6.9), and suggests that Heisenberg spin glasses might have different thermo- 
dynamic properties. 

If (2) does not hold, random ferromagnetism may of course occur. (3) 
Another way to obtain a nonzero spontaneous magnetization is through a 
random external magnetic field. This was shown recently for the spherical 
model if v > 5 and the variance of the field is sufficiently small316~ 
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